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Light scattering by spherical-shaped particles of sizes comparable to the wavelength is founda-
tional in many areas of science, from chemistry to atmospheric science, photonics and nanotechnol-
ogy. With the new capabilities offered by machine learning, there is a great interest in end-to-end
differentiable frameworks for scattering calculations. Here we introduce PyMieDiff, a fully dif-
ferentiable, GPU-compatible implementation of Mie scattering for core-shell particles in PyTorch.
The library provides native, autograd-compatible spherical Bessel and Hankel functions, vector-
ized evaluation of Mie coefficients, and APIs for computing efficiencies, angular scattering, and
near-fields. All inputs — geometry, material dispersion, wavelengths, and observation angles and
positions — are represented as tensors, enabling seamless integration with gradient-based optimi-
sation or physics-informed neural networks. The toolkit can also be combined with “TorchGDM”
for end-to-end differentiable multi-particle scattering simulations. PyMieDiff is available under an
open source licence at https://github.com/UoS-Integrated-Nanophotonics-group/MieDiff.
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I. INTRODUCTION

Mie theory provides an analytical solution for light
scattering by spherical particles, which underpins many
nano-optical applications (e.g., color generation, dielec-
tric metamaterials, nanoantennas, radiative cooling).1
Multi-layer (core-shell) spheres extend this to complex
nanoparticle designs. While the forward scattering prob-
lem can be solved by standard Mie formulae,? the inverse
design of such particles remains challenging: it typically
requires many repeated forward simulations and costly
optimization. Recent work has therefore turned to ma-
chine learning, training neural nets to predict scattering
spectra and act as differentiable surrogates.>” An alter-
native approach, which involves integrating the exact Mie
solution directly into gradient-based design workflows has
not been fully exploited, as analytic derivatives tend to
become very bulky,® especially for core-shell spheres.

A variety of open-source packages implement Mie
theory for spheres. For example, “MiePython” is a
pure-Python (NumPy/Numba) implementation of Mie
theory for homogeneous spheres.? “PyMieSim” is an
open-source Python/C++ toolkit that supports scat-
tering from spheres, infinite cylinders and core—shell
geometries.'? “Scattnlay” is a c+4 programm, focused
on the calculation of nearfields inside and around multi-
layer spherical particles.!! “pyMieCS” is a vectorized
NumPy library specialized for core-shell nanoparticles.'?
These tools offer validated, high-speed forward solvers,
but none provide native differentiation capabilities or
GPU backends.

Automatic differentiation (AD) is the key numeri-
cal technique behind deep learning, and allows to cal-
culate arbitrary derivatives for any numerical calcula-
tion with close to analytical precision.!® The photon-

ics community has seen rapid growth of differentiable
simulation tools based on AD. Recent efforts have pro-
duced open-source Maxwell solvers with autodifferentia-
tion (e.g., FEM, Fourier modal, FDTD or volume integral
approaches) to enable gradient-based inverse design and
topology optimization.'* 2% For Mie computations how-
ever, so far still external libraries are required, which are
not AD-compatible.?°

Recent works have highlighted the power of integrating
physics-based models with deep learning. An important
example are deep learning based nanoparticle design ap-
proaches which, so far, often rely on data-based tandem
networks or surrogate models.”%21:22 These solutions of-
ten suffer from a lack of fidely of the surrogate models??,
as their interpolation is limited to the dataset they are
trained on. These large datasets only cover a limited pa-
rameter space, and new problems reqiure new datasets.
Replacing such surrogate models by AD capable analyt-
ical solvers would suppress this typical point of failure.

We present the PyTorch-based toolkit “PyMieDiff”
which implements analytical Mie theory for core—shell
spherical particles with full support for automatic dif-
ferentiation. Our library implements the standard Mie
recurrence (spherical Bessel/Hankel forward and back-
ward recurrences, angular functions, vector spherical
harmonics®?) entirely in PyTorch. All quantities — parti-
cle geometry (layer thicknesses, materials), wavelengths,
and scattering angles — can be treated as differentiable
tensors. As a result any Mie-derived observable can be
backpropagated to compute gradients with respect to any
input parameter. The code is fully vectorized over Mie
orders, wavelengths, angles, and positions. It supports
batched evaluation of many particles in parallel and runs
on GPU. Our simple API exposes a Particle class for
defining core-shell spheres with possibly dispersive mate-
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rials (using the refractiveindex.info format?®). It imple-
ments methods to compute extinction, absorption and
scattering efficiencies, far-fields and S-matrix elements,
as well as near-fields, all with autograd support, as illus-
trated in figure 1.

Key features of our toolkit include:

e Mie coefficients, efficiencies and cross sections, an-
gular scattering, and near-fields for core-shell par-
ticles

e Compatibility with TorchGDM for multi-particle
scattering simulations with autodiff support.2°

e End-to-end auto-differentiability: the entire Mie
computation is implemented in PyTorch, allowing
gradient-based optimization of particle parameters
(sizes, layer thicknesses, refractive indices, etc.)
through backpropagation.

e GPU-accelerated vectorization: batches of par-
ticles, wavelengths and angles are processed in
parallel, potentially yielding orders-of-magnitude
speedups when workloads are large (especially rel-
ative to serial codes).

e Flexible materials interface: refractive index
data (from refractiveindex.info) are interpolated
through a PyTorch implementation, so material
dispersion enters the gradient graph transparently.

o User-friendly API: a high-level object oriented API
(Particle class) as well as a simple to use func-
tional API make it easy to plug the Mie solver into
other pipelines, including physics-informed neural
networks or design loops.

By embedding analytic Mie theory in an autodiff
framework, our toolkit enables new design approaches
in nano-optics. For example, we demonstrate using the
analytic forward model in gradient-based inverse design
of core—shell particles (including a “tandem” neural net-
work architecture whose forward layer is our Mie solver).
Because the Mie calculations are exact, this avoids the
need for approximate surrogate training.® It also opens
the door to differentiable sensitivity analyses and rapid
parameter retrieval from data.

Potential applications of our autodiff Mie solver in-
clude (but are not limited to):

e Inverse design and optimization: using gradients
to fit particle geometries or material choices to a
target scattering spectrum or objective (extinction,
backscatter, field enhancement, etc.), even in high-
dimensional parameter spaces.

e Machine learning integration: embedding the Mie
forward model as a layer in neural networks (e.g.,
tandem or physics-informed networks) so that ana-
lytic gradients flow through the scattering physics
for training.26
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FIG. 1. Overview of PyMieDiff’s features. The core of the
code is a differentiable Mie solver, which is used to compute
various differentiable observables (efficiencies, angular scat-
tering, near-fields). All calculations are fully implemented
in PyTorch, they all support automatic differentiation and
run on GPU. The shown results are from a gold-silicon core-
shell particle with core radius r. = 100nm and shell radius
rs = 200nm, placed in vacuum and illuminated by a linearly
polarized plane wave.
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e Fast batch simulation: efficient GPU-based evalu-
ation of large ensembles of spheres over broad fre-
quency bands for applications like cloud radiative
transfer, hyperspectral imaging design, or Monte
Carlo light propagation.

o Adjoint sensitivity analysis: computing how scat-
tering observables change with small perturbations
in geometry or material (for uncertainty quantifi-
cation or experimental fitting), leveraging the com-
puted autograd derivatives.

In summary, our PyTorch Mie toolkit provides a fully
autodifferentiable, vectorized and GPU-accelerated im-
plementation of core—shell Mie theory. This bridges an-
alytic nanophotonics and modern ML tools, enabling
gradient-based design methods that were previously dif-
ficult or impossible with black-box Mie solvers. While
we demonstrate the toolkit on optical-frequency exam-
ples, the implementation is completely general and can
be applied at any wavelength (from microwaves to X-
rays) where Mie scattering is relevant.

II. IMPLEMENTATION

Mie theory describes the interaction of light with
a spherical particle through field expansion coefficients



dn,b,,c, and d,, where a, and b, are the coefficients for
the outgoing (scattered) field, while ¢, and d, are the
expansion coefficients for the incoming (internal) fields.

In the case of a core-shell particle of core radius r.
and shell radius ry, the Mie coefficients are functions
of the scale factors x = kr. and y = kry (wavevector
k = koneny, ko =2m/Ay) and the relative refractive in-
dices, me = n¢/Reny, and mg = ng/neyy for the core and
shell, respectively. The explicit form of the core-shell
Mie scattering coefficients is given in the appendix F.
The evaluation of the Mie coefficients requires Riccati-
Bessel functions and their derivatives:

Y0 =2n(a), &@ =), m@ =) (1)
where j, and y, are spherical Bessel functions of the first,

respectively second kind, and hﬁ,”
Hankel functions of the first kind.
The derivatives can be obtained through the identity:

difn(Z) = fnfl(z)_nJrlf"(Z)’ (2)
Z

Z
where f represents any spherical Bessel or Hankel func-
tion (see also appendix D).

In PyTorch (as of version 2.9), spherical Bessel func-
tions are not implemented. The key contribution of our
work is therefore to provide PyTorch-based, AD-capable,
vectorized, fast and stable spherical Bessel routines. We
implement two versions of AD enabled spherical Bessel
functions: (1) a SciPy wrapper and (2) a native PyTorch
implementation based on recurrences. While the SciPy
wrapper is based on stable and tested SciPy routines, it is
not GPU compatible and comes with additional memory
transfer overhead. This limits its efficiency, especially
in batched evaluations. The native torch implementa-
tion on the other hand is fully GPU capable and en-
tirely vectorized. On single, non-parallelized evaluations
the SciPy version is faster, whereas in cases where many
wavelengths, several particles, high orders, or multiple
angles are to be calculated, the native PyTorch imple-
mentation becomes advantageous.

In our PyTorch implementation we compute the spher-
ical Bessel functions j, using downward recurrence, while
the spherical Neumann functions y, are obtained by up-
ward recurrence from analytic low-order seeds. This sep-
aration is necessary because forward propagation of the
Jjn recurrence rapidly becomes unstable for large n and
for z with a large imaginary part (e.g., for spheres with
strongly absorbing / metallic permittivities).

Using the Riccati-Bessel form y,(z) = zju(z) the three-
term recurrence reads:

2n+1

= ju+1iy, are spherical

Vn(2) = 1 (2). 3)

To obtain j,, we run through Eq. (3) as backward re-
currence, starting from seeds j, =0 and j,o1 = 1072 at
a sufficiently large order?*. The sequence is finally re-
normalized to the known jy (jo(z) = sinz/z). The Neu-
mann functions y, are generated via the same three-
term recurrence, applied upward from analytic seeds
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FIG. 2.  Benchmarks. (a) timing for increasing numbers

of simultaneously evaluated wavelengths. (b) timing for in-
creasing numbers of simultaneously evaluated particles. (c)
parallelization speedup on multi-core CPUs. (d) timing com-
parison to other Mie toolkits (on CPU). The batched exam-
ple evaluates 256 different particles simultaneously, each at
256 wavelengths. Note that “treams” is not performance-
optimized for Mie evaluation since it is not a dedicated Mie
toolkit (but T-matrix), in consequence the time-bar for the
treams result is not fully shown.

(vo(z) = —cosz/z, yi(z) = —cosz/z> —sinz/z).2” Imple-
menting both branches using only differentiable Py-
Torch tensor operations preserves automatic differenti-
ation, while avoiding overflow/underflow and the loss of
accuracy encountered with lossy materials, for example
in plasmonic parameter regimes. Spherical Hankel func-
tions and derivatives are generated from the spherical
Bessel relations (see Egs. (2) and appendix D).

With these spherical Bessel and Hankel functions and
their derivatives, the Mie coefficients can be readily eval-
uated (see appendix F). Based on these, scattering ef-
ficiencies and angular scattering patterns can be calcu-
lated, as detailed in appendix G.

As “PyMieDiff” is entirely implemented in PyTorch,
automatic differentiation is fully supported through all
calculations.

III. BENCHMARK

In figure 2 we assess the computational performance
of PyMieDiff and compare it against existing Mie scat-
tering toolkits. Owing to its fully vectorized implemen-
tation utilizing PyTorch tensors, PyMieDiff exhibits effi-
cient scaling for any independent parameter, like number



(a) 101
—— Qext
8 . (?sca
I Oabs
3 61
(e
Q@
S
= 44
w
2 -
0 -
500 600 700 800 900 1000
Wavelength (nm)
— ’perp= |51|2
(b) ’par= |52|2
500.0 nm 600.0 nm 700.0 nm 800.0 nm 900.0 nm

OO®

Re(Ey) Re(E,) Re(E;)
(@) Z (. f\s
L S
_— _
-2.50.0 25 -0.2 0.0 0.2 -2.50.0 2.5
Re(Hy) Re(H,) Re(H;)
A -

————
-0.25 0.00 0.25

-y -

——y
-10 0 10

-0.05 0.05

FIG. 3. Mie forward evaluation by the example of scatter-
ing from a gold-silicon core-shell particle with core radius
re = 20nm and shell radius ry = 100nm, placed in vacuum and
illuminated by a linearly polarized plane wave. Tabulated
material permittivities are taken from literature.?829 (a) Ex-
tinction (blue), scattering (orange), and absorption (green)
efficiency spectra. (b) Scattering radiation patterns in the
scattering plane at selected wavelengths for perpendicularly
(blue lines) and parallel (orange dashed lines) polarized light.
(c¢) Near-fields (electric and magnetic in top and bottom row)
inside and around the particle, evaluated at the resonance at
Ao =575nm. The shown maps are 400 x 400nm?2. Colorbars
indicate field intensity (leftmost panels) and amplitude (sec-
ond from left to right panels), relative to the incident field
absolute amplitude.

of wavelengths per spectrum (Fig. 2a), incident angles,
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import torch
import pymiediff as pmd

# --- setup
20.0 # nm
100.0 # nm
pmd.materials.MatDatabase ("Au")
pmd.materials.MatDatabase ("Si")

r_shell =
mat_core =
mat_shell =
n_env = 1.0

pmd.Particle(
r_core=r_core,
r_shell=r_shell,
mat_core=mat_core,
mat_shell=mat_shell,
mat_env=n_env,

P =

)

# --- evaluation
wl0 = torch.linspace (500,
kO = 2 * torch.pi / wlO

1000, 50) # nm

# efficiency spectra
cs = p.get_cross_sections (k0)

# angular scattering (angles in radian)
theta = torch.linspace(0.0, 2 * torch.pi, 100)
angular = p.get_angular_scattering(kO, theta)

# nearfields (positions in nm)

X, z = torch.meshgrid(
torch.linspace (-250, 250,
torch.linspace(-250, 250,

100),
100),

)

torch.ones_like(x)

r_probe = torch.stack([x, y, z], dim=-1)

fields = p.get_nearfields(k0=kO, r_probe=r_probe)
Listing 1. Particle class usage example for forward Mie
calculations.

evaluation positions or the number of particles (Fig. 2b).
The evaluation time saturates only, when the memory
transfer overhead is of similar magnitude as the actual
computation time of one calculation batch.

Note that, while GPU execution is supported, the per-
formance is currently constrained by the recurrences op-
erating internally at double precision, which is required
for numerical stability. On consumer grade GPUs (for
Fig. 2 an NVIDIA RTX 4090 was used), double precision
is significantly less efficient than lower precision types,
which explains the superior performance on CPUs. Yet,
GPU support can still benefit integration into deep learn-
ing schemes, as memory transfer during model evaluation
is reduced.

On multi-core CPUs, PyMieDiff demonstrates good
parallel efficiency, which seems to approach a plateau
after eight cores (Fig. 2c¢). These parallelization capa-
bilities are automatically used since they are inherent
to PyTorch. This scaling behaviour is particularly ben-
eficial for large-scale parameter sweeps, many-particle
optimization tasks or machine learning integration with
batched training schemes. In a direct comparison with
other publicly available toolkits (Fig. 2d), PyMieDiff
achieves markedly lower evaluation times per wavelength
as soon as batched evaluation is possible, when our
toolkit provides more than one order-of-magnitude im-
provement over the other evaluated tools. Note that
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FIG. 4. Optimization example. (a) Sketch of the particle

optimization procedure. A large number of random core-shell
particles is randomly initialized and evaluated using PyMieD-
iff. Their optical properties (orange lines, here scattering ef-
ficiency spectra) are compared with the design target (dot-
ted black lines, here a Gaussian response). The derivatives
of the loss function (here MSE) with respect to the geome-
try parameters are obtained via PyTorch autograd and used
to iteratively update the geometries. (b) Sketches of the best
particles of selected iteration during an optimization (top row)
together with their spectral response (bottom row). Relative
sizes are on the same scale, the shades of the colors indicate
the real part of the refractive index (darker means higher).
(c) Loss function during the optimization.

while the T-Matrix package “treams”C is included for

completeness, it is not parallelized and not specifically
optimized for single particle Mie calculations.

Overall, these benchmarks establish PyMieDiff as a
performant and scalable solution for Mie scattering com-
putations, combining differentiability, GPU compatibil-
ity, and multi-core efficiency in a single framework.
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cs =

# - gradient of scattering wrt wavelength

wl = torch.as_tensor(500.0) # nm
wl.requires_grad = True
p.get_cross_sections(k0=2 * torch.pi / wl)

cs["q_sca"].backward ()

7 dQdWl = wl.grad

Listing 2. Automatic differentiation usage example.

IV. EXAMPLES

A. Forward evaluation

As a first example, we demonstrate the forward solver
by simulating the extinction, scattering and absorption
efficiencies, as well as angular scattering patterns of a
gold-silicon core-shell particle. The efficiency spectra are
shown in figure 3a, scattering patterns of perpendicular
and parallel polarized light are given in Fig. 3b. Electric
and magnetic near field intensities and real parts of all
field components are shown in Fig. 3c.

The code to configure the particle and calculate the
spectra, angular scattering patterns and near-fields is
given in listing 1, where tabulated materials are handled
by the MatDatabase class and the Particle class acts as
an easy-to-use high-level interface to PyMieDiff.

We compared the results to several other, openly avail-
able Mie solvers and onbtained results identical to ma-
chine precision. This comparison can be found in the
examples of the online documentation.

B. Gradient based optimization

A central challenge in nanophotonics is designing
nanostructures with desired optical properties. Design
problems are typically ill-posed and need to be solved by
optimization. While global optimization is useful in cases
with many local minima or for non-continuous / discrete
problems, this demonstraigion of local gradient based
optimization provides a straightforward implementation
with very fast convergence, more advanced schemes may
be implemented when required.

The automatic differentiation capability of PyMieD-
iff is therefore the key contribution of this work. In the
following example we demonstrate how to use autodiff
for optimization of a core-shell particle to implement as
closely as possible a predefined Gaussian scattering re-
sponse.

We start by defining a loss function, using the mean
square error (MSE) of the current iteration’s particle re-
sponses vs. the target response:

L= (Rtarget,i - Ri)2 .

-

S| =

i=1

Here the R; serve as general placeholders for observables
calculated by Mie theory, and n is the total number of cal-
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FIG. 5. “Mie-informed” tandem network. (a) Sketch of the training configuration. The design observable (e.g., scattering

efficiency, or any other Mie-calculated value) is fed into the “inverse network” (here a simple MLP). The NN result is interpreted
as core-shell geometry parameters and fed into PyMieDiff, which calculates analytically the response of the particle. The result
of the Mie calculation is compared to the original input data using some loss function (here MSE). The inverse network is
trained using backpropagation of the loss through the differentiable Mie solver and then the network itself. The inset shows
the training loss for an inverse network trained on scattering efficiency spectra of dielectric particles. (b) Examples of inverse
design responses (orange lines) vs. randomly sampled design targets (dashed black lines) from the training dataset .

culations (e.g., multiple wavelengths, angles, particles).
The optimization targets are given by Riarget,i- Via auto-
matic differentiation, we calculate the partial derivatives
of L with respect to the geometric parameters dL/0¥,
and update the particles to minimize L. To avoid getting
stuck in local minima, we can perform this optimizaiton
on a large number of initial guesses. This optimization
procedure is depicted in figure 4a.

As example, we optimize the scattering efficiency Qgca
of a dielectric core-shell particle, by modifying its core
and shell size as well as the material refractive indices.
We limit the radii to 10 — 100nm and the complex re-
fractive indexes to dielectric materials with n,., rang-
ing from 1 to 4.5 and njye from 0.0 to 0.1. To keep
the optimization within these restrictions, we optimize
normalized values using a sigmoid activation inside the
optimization loop.

In this example, the popular Adam optimizer is used.?!
While Adam is ideal for mini-batch based optimization
as typically used for neural network training, it performs
well also on our optimization task. We demonstrate in
the online documentation how to use the L-BFGS opti-
mizer as an alternative.??

We perform a batch optimization on 100 random core-
shell particles in parallel, which takes roughly 100 ms per

iteration on a typical office CPU. The spectra from the it-
eratively improved solutions are shown in figure 4b along-
side the target spectra. The convergence curve is shown
in figure 4c. We found that also higher learning rates are
usually stable, allowing convergence within some 20-30
iterations. Yet as optimization is fast, lower, very stable
learning rates can be used without major inconvenience.

C. Core-shell design: Mie informed tandem model

Our toolkit being entirely implemented in Pytorch, it
can be directly implemented within any PyTorch writ-
ten machine learning pipeline. Here we demonstrate how
to train a deep learning neural network through a Mie-
theory based loss function.

As a simple technical example, we train a design net-
work, capable to predict core-shell geometries that fulfill
given target optical properties. This so-called “tandem”
model is a commonly used deep learning method for in-
verse design.?!?? It works by regularizing the training
of the ill-posed inverse problem through a forward pre-
dictor, as depicted in figure 5a. Typically, the forward
model is a trained neural network that approximates a



phyics solver, adding automatic differentiation capabili-
ties. With PyMieDiff as fast, autograd-compatible Mie
solver, analytical Mie theory can be used as an error-free
forward model through which the loss can be backprop-
agated to train the inverse network.

We train the Mie-informed tandem network on the
same type of particles as in the optimization exam-
ple, limiting the materials to constant dielectrics and
training the model on spectra in the visible light range
(400 —800nm). A dataset of 20,000 spectra, calculated
from randomized particles is used for training the model.
The inverse model consists of a fully connected neural
network (multilayer perceptron, MLP) with three hid-
den layers, each containing 1024 neurons, connected by
ReLU activation functions. A sigmoid function is used
at the output layer to ensure positive predictions within
our defined particle limits. Using a basic manually op-
timized training schedule, with two learning rates (first
10~4, then 107°) and incremental increase of the batch
size (from 32 up to 256 in four steps), we obtain fast con-
vergence after a few thousand training steps (see inset in
Fig. 5a). The training takes a few minutes on an 8-core
office CPU.

Once the inverse model is trained, we use scattering
spectra from particles that were not in the training set
as test-targets and predicting the geometry parameters
by the inverse network. A few examples are given in fig-
ure 5b, showing good performance of the model. Note
that, as the forward model is “perfect” (exact Mie solu-
tion), the discrepancy of the solutions with respect to the
traget spectra comes solely from the inverse network, for
which we deliberately use a very simple dense network,
chosen to have a short training time of only a few min-
utes.

D. Autodiff multi-scattering: End-to-end metasurface
design

As a final example, we demonstrate how PyMieDiff
can be combined with the autodiff light scattering simu-
lation toolkit “TorchGDM?”,20 to perform multi-particle
scattering simulations. PyMieDiff evaluates the Mie re-
sponse of one or several core-shell particles, which are
then used by torchGDM to generate a structure model
and calculate the optical response of an ensemble of many
scatterers, where all optical interactions between the par-
ticles are taken into account. Since both tools fully sup-
port PyTorch automatic differentiation, gradient opti-
mization can be used to iteratively optimize the positions
and core/shell size parameters for any target observable.
This is illustrated in figure 6a.

We demonstrate this capability on a simple toy prob-
lem, not meant to be relevant for an actual application.
We calculate the field intensity enhancement at a tar-
get focal position, to optimize a diffractive lens made of
silicon-gold core-shell particles and optimize for the core
and shell radii and the particle positions on the XY plane.

Starting from the same initial conditions (10 x 10 identi-
cal 90 nm/15 nm silicon/gold core/shell spheres on a reg-
ular grid), we compare two scenarios: (1) Optimization
of the positions of many identical particles, illustrated
in figure 6b, and (2) optimization of particle positions
and each particle’s core and shell size, illustrated in fig-
ure 6¢. As expected, we obtain a higher focal intensity if
more degrees of freedom are available (individual particle
sizes).

The multi-scattering capability may be useful for in-
stance in the design of bottom-up metasurfaces or for
fitting optical scattering data from dense, spherical solu-
tions, where homogenization models fail.

V. LIMITATIONS AND PERSPECTIVES

Here we list current limitations of PyMieDiff and pos-
sible future extensions:

e PyMieDiff is currently limited to homogeneous
spheres and core-shell particles. In the future we
may implement multi-shell spheres as well as 2D
Mie theory for infinite cylinders. The latter are
more challenging to implement with pure PyTorch
autodiff support, as 2D Mie theory requires cylin-
drical Bessel and Hankel functions, for which it is
technically more difficult to implement efficient re-
currences.

e The recurrences currently require to be performed
at double precision, which significantly slows down
the code on consumer grade GPUs. In the future,
more stable algorithms may be implemented such
as logarithmic derivatives.?3:34

e Vector spherical harmonics are currently imple-
mented only for order / = 1, which limits the
field calculations to particles with spherical sym-
metry. We plan to add pure pytorch implemen-
tations of general vector spherical harmonics that
could be used for field calculations of general T-
matrices. A possible route could be to expand on
NVIDIA’s recent work about spherical Fourier neu-
ral operators.3?

e The current recurrences can become unstable in
cases where many expansion orders are contribut-
ing to the response, for instance with very large
particles or plasmonic/dielectric interfaces in larger
particles. Be aware of these limitations. This could
be mitigated in the future by implementing more
stable algorithms, such as logarithmic derivatives
recurrences.’

VI. CONCLUSIONS

In this work, we present PyMieDiff, an implementa-
tion of Mie scattering for core-shell particles fully built
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Combining PyMieDiff with torchGDM? for end-to-end multi-scattering autograd calculations. (a) Sketch of the

gradient calculation scheme. PyMieDiff is used to calculate differentiable Mie coefficients, which are in turn used to create
TorchGDM structure models for multi-particle scattering simulations. Gradients can then be obtained with respect to all input
parameters, including particle geometry and material properties (represented by ¢) and particle positions (r;). (b) Optimization
of a diffractive lens, composed of identical particles. Positions as well as the size parameters of the particle are optimized. Top:
field intensity enhancement in side view, bottom: top view of the geometry. (c) Same as (b), but now each particle’s core and
shell sizes are optimized individually. Core sizes are indicated by the circle size, shell size by the color code. All scale bars are

2 um.

in the automatic differentiation framework PyTorch. It
is available as open source software at https://github.
com/UoS-Integrated-Nanophotonics-group/MieDiff.
The package enables gradient-based optimisation and
hybrid physics-informed deep learning models. It can
be combined with other PyTorch-based toolkits, such
as torchGDM, to perform end-to-end differentiable
multi-particle scattering simulations. The toolkit was
designed with flexibility and performance in mind,
offering both, a SciPy-wrapped interface and a native
PyTorch implementation with GPU support.

We demonstrate the capabilities by several examples
of inverse design problems, including the iterative recon-
struction of core-shell particle geometries from a target
scattering spectrum, neural network training through an-
alytical Mie calculations, and the gradient-based design
of a diffractive lens made of core-shell spheres, for which
PyMieDiff is combined with the multi-particle scattering
toolkit “TorchGDM”.

At the time of the submission, we became aware of
a manuscript developing similar ideas.” This underpins
the timeliness and importance of the differentiable formu-
lation of algorithms that solve multiple-scattering prob-
lems, a key requirement for inverse design of photonic
nanostructures.
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APPENDIX

A. Example code

All examples shown in this work, further ex-
amples, as well as the full technical documen-
tation of the package are available online at

https://uos-integrated-nanophotonics-group.
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https://doi.org/10.5258/SOTON/D3776
https://uos-integrated-nanophotonics-group.github.io/MieDiff/index.html

github.io/MieDiff/index.html.

B. Vectorization conventions

PyMieDiff routines are implemented along the follow-
ing conventions:

Mie orders: The (Mie) order n is passed as an integer
specifying the maximum order. Then, all PyMieDiff rou-
tines (special functions, Mie coefficient routines, etc...)
calculate all orders up to the maximum order. An addi-
tional, order dimension is added as the first dimension to
the shape of the passed argument(s).

Vectorization dimensions: Internal vectorization con-
ventions are the following:

o First dim.: Order / Mie order n (an additional, first
dimension is added upon function calls)

o Second dim.: Number of particles Nparticles
e Third dim.: Number of wavenumbers ko: Nyq

e Fourth dim.: Number of angles or number of posi-
tions (angular scattering / fields)

Further dimensions (e.g., for field components) can
be added after these four main dimensions and will be
broadcasted automatically.

C. Spherical Bessel recurrences

For comparison and testing, we provide an alternative
PyTorch-based scheme to compute the spherical Bessel
functions j, using a continued fraction calculation,3® Us-
ing the Riccati-Bessel form y;,(z) = zjn(z) the three-term
recurrence reads

2n+1

Vnt1 (Z) = T WH(Z) — Yn-1 (Z)a (4)

and defining the ratio A,(z) = Wu(z)/Wa—1(z) gives the
continued-fraction relation for stable downward ratios:

A3 = 37 1 ' (5)

Z _2n+3_ 1
Z

We truncate the continued fraction at a sufficiently
large Amax, 2 compute the A, by backward recurrence,
reconstruct Y, (and hence j, = ¥, /z) up to a multiplica-
tive constant, and fix the global scale using jo(z) =sinz/z.
Both implementations for j, are similarly stable and can
be selected with the argument which_jn (“ratios” or “re-
currence”).

D. Spherical Hankel functions and derivatives of spherical
Bessel functions

Spherical Hankel functions can be obtained from spher-
ical Bessel functions of first and second kind:

hp(2) = jn(z) —iyn(2). (6)

Derivatives of spherical Bessel functions can be obtained
by either of the following recurrences:

1@ = f1 - (0),
fl’/l(z) = _fn+1 (Z) + Efn(Z) )

where f,(z) is any spherical bessel function.

Note: In practice, to avoid negative orders, derivatives
for n > 0 are calculated using the first relation in Egs. (7),
while the derivative for n =0 is obtained from the second
relation:

(7)

foz) = =fiz). (8)
E. Vector spherical harmonics

The vector spherical harmonics Nl(fn) and M;Z) can be
used to describe the near fields of Mie scattering.3” For
spherical symmetry, we need only the [ =1 odd and even
order harmonics, which are given by:?

%sin(pn(n—kl)sinenn(cose)zn(p)_
N — %sintpfn(cosﬂ)[pzn(p)]/ .9
7cos(p7rn(c0s6)[pzn( )]’
Lcos@n(n+1)sin0 m,(cos0)z,(p)]
NK ’ Lcos @ 1,(cos0) [pza(p)]) (10)
eln = p n n )
L sing m,(cos ) [pz4(p)]

0
Mffi)n: cos @ (cos0)z,(p) |, (11)
—sin@ 7(cos 0)z,(p) |
0 -
Mg&: —sin@ w(cos 0)z,(p) | . (12)
—cos @ 7(cos0)za(p) |

Here, m has become the Mie order n, p = kr, ¢ is the
azimuthal and 6 the polar angle. The spherical Bessel
functions of order n are denoted by z,. The kind of z, is
indicated by the superscript ®) of N and M: (1 denotes
the first kind, j,(kr), @ the second kind, y,(kr) and )

denotes spherical Hankel functions hsll)(kr).

F. Mie coefficients

The Mie coefficients for a core-shell spherical particle
are given by?


https://uos-integrated-nanophotonics-group.github.io/MieDiff/index.html
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V) W) — Aty )] — 1 VA0) Ym2y) — Ay ) )
! En(¥) (W (may) — A 2, (m2y)] — ma & (y) [Wn(may) — An X (m2y)]
b — MY () [ (may) — By 2 (may)] = W (9) [ (may) — By 2 (m2y)] (14)
my &, (y) (W, (may) — By %, (m2y)] — gr/t()’) (W (m2y) — By Xn(m2y)] ’

where m) = ny /neny and my = ny /neny are the relative re-
fractive indices for the core and shell, respectively and
x =ka and y = kb are the scale factors with the wavevec-
tor in the host medium k = kgneny. The Rlccatl Bessel

functions are given as ¥,(z) = zjn(z), &.(z) = i ( ) and
Xn(2) = 2yn(2)-
A, = Y (ma) Vi (mx) = m o () Yalmx) g o)
T ma i (max) Wy (max) — my g (mox) W (myx)

— my Y (m1x) W, (max) — my Y (mox) y, (mx)
B, = : ; - (16)
my Yy (m1x) x5, (max) — my Wy, (m1x) X (m2x)

The Mie coefficients for internal fields can be found in
literature.2

G. Mie far-field observables

The scattering, absorption and extinction efficiencies
can be obtained from the Mie coefficients as,

1
27r

1 - 2 2
Qsca 27[ k2 Z 2I’l+1 (|aVl| +|bn| )7 (18)

Qext = k ; (2n+1)Re{a, +b,}, (17)

Qabs = Qext - Qsca . (19)

The cross sections are given by the efficiencies times the
geometric cross section of the particle Ggeo = 7.

The angular dependent scattering i.e. the scattered ir-
radiance per unit incident irradiance for perpendicularly
and parallel polarised illumination light (with respect to
the scattering plane), as well as for unpolarised light, are
given by,

. . Ipar+1
ipar =|S2 s iper = S1 Py dunp = % (20)
Where,

Tmax 2p 41

S$1(0) = _— b 21

1( ) = n(nJr l) (an”n(.u> + nTn(”)) s ( )
Tmax 2p 41

S$>(0) = _— b 22

2( ) = n(n+ l) (anTn(:u)"" nﬂn(“)) ) ( )

(

where u =cos@. The angular functions m,(cos6) and
T,(cos 0) are defined from the associated Legendre poly-
nomials P} (cos 0).2 These satisfy the recurrence relations

m(u) =0, (23)

m(u) =1, (24)
2n+1 n+1

o1 () = n W (1) — Tu1 (1), (25)

Ta(i) = np (1) — (n+1) Ty (1) - (26)

H. Near-field observables

The near-fields can be found by matching the conti-
nuity conditions at each spherical interface, which yields
following formulae:?

E’:ZE"( olnilN
n=1
—k o
H; = FH,; E, ( eln oln
cM ) —id,N

3
Il

=
I
+
s
o

&

I

ol

o
—_~ =

Oy n=1
E2 ZE” (f” oln ig”Nf(3131+v” an eln
n=1
— 2 N
H2 o ZE” (g”Meln+lf” 01n+Wn eln+lvn oln
n=1

n=1

P

Hy— — (sz
(Dun 1

eln)

)

M)

aM{, +ieN,y, ).
")

)

)

)

ZE (lan oln — bnM,
e

+a,M

oln

The subscripts indicate the region and type of field. “;”:
incident field in the background medium, “;”: total field
in the core, “»”: total field in the shell medium, and
“37: scattered field in the background medium. The total
ﬁelds in the background medium are given by E¢ot = E; +
E3 and Htot = H,’ +H3



I.  Second derivatives of the Spherical Bessel functions

To add automatic differentiation capabilities to the
SciPy interface, we add custom PyTorch autodiff classes
with manually implemented derivatives. To allow au-
tograd for the first order derivatives of spherical Bessel
functions that occur in the Mie coefficients, we need
to implement analytic formulae for their second order
derivatives. Starting from the recurrence relation Eq. (7)
we substitute n =n+ 1 into the first equation to get,

n+2
z

fo1 (@) = fa(2) = Ja+1(2) (27)

Taking the derivative of the second equation,

2
%fn(z) = _dizfn—&-l(Z) +ndiz (fn(Z)> ) (28)

Z

1) = ~fra(@ 4 (FEZLE) o)

Z
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Rearrange this to,

21 (@) = =2 f1(2) +nzfy = nfa(2), (30)

and then substitute the modified first equation and the
second equation to get,

2f(z) = =7 (fn(z) - iHZ—2an(Z)) +
v (m @+ <z>> nfu(2).

Rearrange this to get the equation for f/'(z),

212 = fal2) (= +107 = n) + fui1 (2) (2(n+2) —n2)
(31)

F1@) = 2 [ -2 ) 1 22hn@] . (32)
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